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Abstract: Background and Objectives: 18F-fluorodeoxyglucose (FDG) positron emission tomography
(PET) (PETFDG) image can visualize neuronal injury of the brain in Alzheimer’s disease. Early-phase
amyloid PET image is reported to be similar to PETFDG image. This study aimed to generate PETFDG

images from 18F-florbetaben PET (PETFBB) images using a generative adversarial network (GAN)
and compare the generated PETFDG (PETGE-FDG) with real PETFDG (PETRE-FDG) images using the
structural similarity index measure (SSIM) and the peak signal-to-noise ratio (PSNR). Materials and
Methods: Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, 110 participants
with both PETFDG and PETFBB images at baseline were included. The paired PETFDG and PETFBB

images included six and four subset images, respectively. Each subset image had a 5 min acquisition
time. These subsets were randomly sampled and divided into 249 paired PETFDG and PETFBB subset
images for the training datasets and 95 paired subset images for the validation datasets during the
deep-learning process. The deep learning model used in this study is composed of a GAN with
a U-Net. The differences in the SSIM and PSNR values between the PETGE-FDG and PETRE-FDG

images in the cycleGAN and pix2pix models were evaluated using the independent Student’s t-
test. Statistical significance was set at p ≤ 0.05. Results: The participant demographics (age, sex, or
diagnosis) showed no statistically significant differences between the training (82 participants) and
validation (28 participants) groups. The mean SSIM between the PETGE-FDG and PETRE-FDG images
was 0.768 ± 0.135 for the cycleGAN model and 0.745 ± 0.143 for the pix2pix model. The mean PSNR
was 32.4 ± 9.5 and 30.7 ± 8.0. The PETGE-FDG images of the cycleGAN model showed statistically
higher mean SSIM than those of the pix2pix model (p < 0.001). The mean PSNR was also higher in the
PETGE-FDG images of the cycleGAN model than those of pix2pix model (p < 0.001). Conclusions: We
generated PETFDG images from PETFBB images using deep learning. The cycleGAN model generated
PETGE-FDG images with a higher SSIM and PSNR values than the pix2pix model. Image-to-image
translation using deep learning may be useful for generating PETFDG images. These may provide
additional information for the management of Alzheimer’s disease without extra image acquisition
and the consequent increase in radiation exposure, inconvenience, or expenses.

Keywords: Alzheimer; dementia; deep learning; GAN; FDG; florbetaben

1. Background

Alzheimer’s disease (AD) is the most common form of dementia and is character-
ized by progressive deterioration of memory and cognitive function. The characteristic
neuropathological findings of AD consist of the accumulation of amyloid-β (Aβ) plaques
in the extracellular space and the formation of neurofibrillary tangles in the intracellular

Medicina 2023, 59, 1281. https://doi.org/10.3390/medicina59071281 https://www.mdpi.com/journal/medicina

https://doi.org/10.3390/medicina59071281
https://doi.org/10.3390/medicina59071281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/medicina
https://www.mdpi.com
https://orcid.org/0000-0003-2003-813X
https://orcid.org/0000-0001-9037-2155
https://doi.org/10.3390/medicina59071281
https://www.mdpi.com/journal/medicina
https://www.mdpi.com/article/10.3390/medicina59071281?type=check_update&version=1


Medicina 2023, 59, 1281 2 of 15

space [1,2]. Early detection and assessment of abnormal Aβ deposition in the brain are
important for proper management and treatment, as abnormal deposition of Aβ begins
decades prior to the onset of cognitive decline [3].

Positron emission tomography (PET) imaging using 18F-florbetaben (FBB) (PETFBB)
is a valuable tool for detecting Aβ in the brain and plays a vital role in the diagnosis and
assessment of treatment response in AD. However, the use of PETFBB alone is inadequate
for differentiating AD from other forms of dementia, including Lewy body dementia [4].
Additionally, PETFBB imaging may play a limited role in monitoring disease progression
in AD cases with saturated Aβ deposition [5]. On the other hand, 18F-fluorodeoxyglucose
(FDG) PET (PETFDG) imaging, which evaluates glucose metabolism, is useful for monitoring
disease progression in AD [6] and differentiating AD from other types of dementia owing
to the different patterns of glucose metabolism in the brain [7]. Therefore, the simultaneous
use of PETFDG and PETFBB images may be synergistic and enhance the accuracy of AD
diagnosis and enable a better assessment of disease progression. However, obtaining both
PETFBB and PETFDG images in a patient poses significant challenges for practical reasons
such as radiation exposure, inconvenience, and higher costs. Early-phase amyloid PET
imaging reflects regional blood flow in the brain, and several studies have found that
regional blood flow and glucose metabolism in the brain are coupled. Many studies have
found similarities in tracer distribution between early-phase amyloid PET images and
PETFDG images, suggesting its value as an alternative imaging modality [8–10]. However,
there are drawbacks, such as patient inconvenience, additional scan time, and limited
availability of PET scanners, when compared to conventional amyloid PET imaging.

With the implementation of deep learning in medical imaging, image translation from
one modality to another, such as PETFBB images to magnetic resonance imaging (MRI) [11],
early-phase 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane PET (18F-
FP-CIT PET) images to PETFDG images [12], has been widely conducted and evaluated
in previous studies. Although a recent study reported on image-to-image translation
using deep learning between amyloid tracers [13], there are limited studies focusing on
generating PETFDG images from PETFBB images. The application of deep learning for
generating PETFDG images from PETFBB images may be advantageous because it overcomes
the challenges mentioned earlier.

Therefore, the objective of this study was to generate 18F-FDG PET (PETGE-FDG) im-
ages from 18F-florbetaben PET (PETFBB) images using a generative adversarial network
(GAN) and compare PETGE-FDG with real PETFDG (PETRE-FDG) images using the structural
similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR).

2. Materials and Methods
2.1. Datasets

This study used the baseline PETFBB image and PETFDG image datasets downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu,
accessed on 3 June 2022) [14]. The inclusion criterion for this study was the availability of
both PETFBB and PETFDG images at baseline. Consequently, a total of 110 participants were
included from the ADNI database (adni.loni.usc.edu, accessed 3 June 2022). The ADNI
was launched in 2003 as a public–private partnership led by the principal investigator,
Michael W. Weiner, MD, VA Medical Center and University of California, San Francisco.
The primary objective of the ADNI was to test whether serial MRI, PET, and other biological
markers can be combined with clinical and neuropsychological assessments to measure
the progression of mild cognitive impairment and early AD. For the most up-to-date
information, visit http://www.adni-info.org (accessed on 3 June 2022).

The baseline PETFDG image acquisition was performed 30–60 min after injection of
approximately 185 MBq of FDG, and image acquisition time was 30 min. On the other
hand, the baseline PETFBB image acquisition was performed 90–110 min after injection of
approximately 300 MBq of FBB and image acquisition time was 20 min. The PETFBB and
PETFDG images consisted of four and six subsets, respectively. Each subset was acquired
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Medicina 2023, 59, 1281 3 of 15

every 5 min during the image acquisition process. All subsets of paired PETFBB and
PETFDG images were randomly sampled and divided into 249 and 95 subsets for training
and validation, respectively. The Institutional Ethics Committee of the Ulsan University
Hospital reviewed this observational study and waived the requirement for informed
consent (IRB file number: UUH2022-05-028).

2.2. Deep-Learning Model with Image Preprocessing

Because all the PET images had different matrix sizes and our computer resources were
limited, all images were resampled with a matrix size of 64 (height) × 64 (width) × 1 (color
channel). A total of 15,936 two-dimensional (2D) images were prepared for training,
and 6080 were used for validation. A “Bit Stored” attribute in the Digital Imaging and
Communications in Medicine (DICOM) header of each PET image was used to determine
the divisor for data rescaling, which converted unsigned integer pixel values to floating
point values (range: 0.0–1.0).

This study adopted unsupervised image-to-image translation models using GAN and
U-Net architecture that were based on “CycleGAN and pix2pix in PyTorch” (https://github.
com/junyanz/pytorch-CycleGAN-and-pix2pix, accessed on 10 March 2023) [15–17]. The
GAN developed for the purpose of translating unpaired images consisted of a generator
and a discriminator. The generator was responsible for generating output images based
on input images. In the generator, the key network used for extracting features from the
input images and delineating the output images was U-Net. The max-pooling process
used in the original U-Net was omitted to improve training efficiency. Additionally, leaky
RELU was used for a downward activation function instead of RELU, which was the
activation function in the original U-NET. As for the discriminator, only the left half
of the U-NET architecture was used because the right half was the part of the image
generation that was not necessary for discrimination. In other words, the discriminator
was operated by using the extracted features of the images and the mean squared error for
a loss function that calculated differences between the generated and ground truth target
images. The architectural designs of the generator and the discriminator are illustrated in
Figures 1 and 2. The architecture of the cycleGAN model is shown in Figure 3. The model
architecture is expressed as follows.

G_A(A)→ B (1)

G_B(B)→ A (2)

D_A(G_A(A))→ B (3)

D_B(G_B(B))→ A (4)

Loss(A, B) = D_A(G_A(A)) + D_B(G_B(B)) + |G_B(G_A(A)) − A| + |G_A(G_B(B)) − B| + |G_A(B) − B| + |G_B(A) − A| (5)

A and B represent PETFBB and PETFDG images, respectively. The right-hand variables
of the arrows indicate the ground-truth target images. G_A (1) and G_B (2) are the same
generators; however, G_A (1) is a forward generator that creates B from A, and G_B
(2) is a backward generator that creates A from B. D_A (3) and D_B (4) are the same
discriminators that determine the differences between the real and forward-/backward-
generated images. Loss (A, B) (5) represents a loss function that addresses the differences
between the generated and ground-truth target images. The cycleGAN and pix2pix models
were then trained to minimize loss (A, B). The cycleGAN model uses all paired generators
(1,2) and discriminators (3,4) mentioned above (Figure 3). In contrast, the pix2pix model
consists of only a forward generator (1) and a discriminator (3) that was drawn in Figure 4.
Minor modifications were made to the original Python code to allow it to run on Python
3.10, PyTorch 2.0.0, CUDA 11.7, and Windows 10.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 1. The generator with the modified U-Net architecture. The input/output image format was
64 (width) × 64 (height) × 1 (channel). After the vertical median line was virtually drawn on the
U-Net diagram, the left half-side of the U-Net was used for feature extraction from input images. The
other right half-side was used for image generation.
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Figure 2. The discriminator with the left half-side of the U-Net architecture. Features extracted from
images were fed to the mean squared error (MSE) loss function for comparison.
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Figure 3. Diagram of the cycleGAN model. In forward generation, * PETFBB images were put
into the generator and ** PETGE-FDG images were generated. The discriminator compared these
PETGE-FDG images with ground-truth PETFDG images. In backward generation, the PETFBB images
were generated from PETGE-FDG images using the same generator and discriminator.

Figure 4. Diagram of the pix2pix model. ** PETGE-FDG images were generated from * PETFBB images
using the one-way process, the same forward generation of the cycleGAN model.
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2.3. Statistical Analysis

Participant demographics between the training and validation datasets were compared
using the independent Student’s t-test and Mann–Whitney U test for continuous and
categorical variables, respectively. The similarity between the PETGE-FDG and PETRE-FDG
images was determined using SSIM [18]. The formula for the SSIM is as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

)
where x and y are PETRE-FDG and PETGE-FDG images, respectively, to be compared, and
µ and σ are the mean and standard deviation of these images. The pixel value ranges of
these images were used to calculate constant variables C1 and C2, which were used to
stabilize the division with a weak denominator. When a greater similarity exists between
the x and y images, the SSIM value approaches 1. A greater anticorrelation between these
images resulted in an SSIM value closer to −1. The SSIM value was close to zero when
no similarity was observed between the images. The PSNR between the images was also
measured. The PSNR is computed using the following formula:

Mean squared error (MSE) =
1

mn∑m−1
i=0 ∑n−1

j=0 [I(i, j)− K(i, j)]2

PSNR (dB) = 20log10(MAXI) − 10log10 (MSE)

where ‘m’ and ‘n’ represent the width and height of an image, respectively, and ‘K’ rep-
resents the noisy approximation of the image. The term ‘MAXI’ refers to the maximum
possible pixel value of the image. A higher PSNR value indicated that the images were
more similar.

An independent Student’s t-test was performed to compare the SSIM values of the
image datasets using the cycleGAN and pix2pix models. Statistical significance was set as
p ≤ 0.05.

3. Results
3.1. Baseline Demographics

Of the 110 participants, 82 (75%) were in the training group and 28 (25%) were in the
validation group. There were no significant differences in age, sex, or diagnosis between
the training and validation groups (p-values for age, sex, and diagnosis were 0.68, 0.72, and
0.55, respectively). Table 1 presents the detailed demographics of the participants.

Table 1. Baseline participant demographics.

Training Group Validation Group Total

Number 82 (75%) 28 (25%) 110
Age *, years 72.8 ± 7.8 72.0 ± 9.1
Sex *, n (%)

Male 50 (61%) 16 (57%) 66 (60%)
Female 32 (39%) 12 (43%) 44 (40%)

Diagnosis †, n (%)
Normal 1 (1%) 1 (4%) 2 (2%)

MCI 60 (73%) 21 (75%) 81 (74%)
AD 21 (26%) 6 (21%) 27 (24%)

Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease. The p values for age, sex, and diagnosis
were 0.68, 0.72, and 0.55, respectively, * Independent Student’s t-test (p > 0.05) indicates no statistical significance.
† Mann–Whitney U test (p > 0.05) indicates no statistical significance.
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3.2. Differences in SSIM and PSNR Values between PETRE-FDG and PETGE-FDG Images

PETGE-FDG images were created using the cycleGAN and pix2pix models with training
times of 62 h 36 min and 21 h 22 min, respectively. The mean SSIM (SSIMmean) between
the PETRE-FDG and PETGE-FDG images was 0.768 for the cycleGAN model and 0.745 for the
pix2pix model (Table 2). The cycleGAN model showed significantly higher SSIM values
than the pix2pix model (p < 0.001). The SSIM values in the cycleGAN and pix2pix models
are represented by the box plots in Figure 5. The mean PSNR (PSNRmean) between the
PETRE-FDG and PETGE-FDG images was 32.4 for the cycleGAN and 30.7 for the pix2pix
models (Table 3). The PSNR values of the cycleGAN model were significantly higher than
those of the pix2pix model (p < 0.001). The PSNR values for the cycleGAN and pix2pix
models are shown in the box plots provided in Figure 6. Representative PETGE-FDG and
PETRE-FDG images from one participant are shown in Figure 7 (A, PETFBB; B, PETGE-FDG
using the pix2pix model; C, PETGE-FDG using the cycleGAN model; and D, PETRE-FDG,
from left to right).

Table 2. Mean SSIM values between cycleGAN and pix2pix models.

CycleGAN Model Pix2pix Model p Value *

Mean 0.768 0.745 <0.001
Standard deviation 0.135 0.143

Abbreviations: SSIM, structural similarity index measure; GAN, generative adversarial network. * Independent
t-test (p < 0.05) indicates statistical significance.

Figure 5. Difference in mean structural similarity index measure (SSIM) values between the cycleGAN
(A) and pix2pix (B) models. The cycleGAN model shows a significantly higher SSIM than the
pix2pix model.
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Table 3. Mean PSNR values between cycleGAN and pix2pix models.

CycleGAN Model Pix2pix Model p Value *

Mean 32.4 30.7 <0.001
Standard deviation 9.5 8.0

Abbreviations: PSNR, peak signal-to-noise ratio; GAN, generative adversarial network. * Independent t-test
(p < 0.05) indicates statistical significance.

Figure 6. Difference in mean peak signal-to-noise ratio (PSNR) values between the cycleGAN (A) and
pix2pix (B) models. The cycleGAN model shows a significantly higher PSNR than the pix2pix model.

Figure 7. A representative case of PETGE-FDG and PETRE-FDG images. PETFBB (A), PETGE-FDG using
the pix2pix model (B), PETGE-FDG using the cycleGAN model (C), and PETRE-FDG (D) are arranged
from left to right.

4. Discussion

With an increasingly aging society, the incidence of neurodegenerative disorders may
also increase, particularly AD, which is the most common form of dementia [19]. The
early and accurate diagnosis of AD is important for the medical and socioeconomic care
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of patients [20]. It allows for the early and appropriate management of AD patients, with
the medical faculty focusing on preserving cognitive function and preventing irreversible
damage [21]. For this reason, there has been a considerable number of studies dedicated
to utilizing non-invasive imaging modalities, such as amyloid PET and PETFDG, in recent
years. There has been increasing interest in the potential of early amyloid PET image as an
alternative to PETFDG. As in our study, generating PETGE-FDG images from PETFBB images
using deep learning has clinical implications in terms of reducing the cost and radiation
exposure of the patient and eliminating the inconvenience of repeat examinations.

The neuropathological hallmarks of AD are the presence of intracellular neurofibrillary
tangles and extracellular amyloid plaques [22]. Increased amyloid deposition in the brain
is known to be associated with cognitive decline, and these deposits have been detected
in AD patients approximately 10–15 years prior to symptom onset. Since PiB was first
used in research, the only FDA-approved clinical amyloid PET tracers to date are FBB,
18F-Florbetapir, and 18F-Flutemetamol, an imaging test that allows for the visual assessment
of abnormal amyloid deposition in the brain [23]. Although amyloid PET imaging is highly
specific for assessing the amyloid burden in the brain, there are difficulties in assessing the
progression of AD in patients who exhibit high levels of amyloid deposition at the time of
diagnosis [24]. In addition, positive findings of amyloid deposition can be seen not only in
AD but also in other types of dementia, such as Lewy body dementia [25].

The brain utilizes approximately a quarter of the body’s glucose on a daily basis.
Glucose is transported from the blood to the brain cells via glucose transporters. FDG,
which is a glucose analog, is transported to brain cells via the same pathway but undergoes
phosphorylation within the cell, which prevents it from being released from the cell. FDG
accumulates without further glycolysis and is a good reflection of glucose uptake in brain
cells [7]. The stimulation of neurons has been reported to coincide with FDG uptake at
neuronal terminals, indicating that FDG uptake in the brain reflects neuronal activity [7].
Thus, PETFDG imaging serves as a functional imaging biomarker for assessing regional
brain dysfunction caused by neuronal injury in AD. AD is characterized by decreased
glucose metabolism in the posterior cingulate cortex, precuneus, and parieto–temporal
cortex on the PETFDG image, and in advanced cases, the decreased FDG uptake may extend
to the frontal cortex. It is a non-invasive imaging test that is useful for the evaluation of
disease extent in AD as well as for the differential diagnosis of other types of dementia, in
which cases amyloid PET imaging may have a limited role [5,26–29]. It can also be used to
predict the progression from mild cognitive impairment to AD [30] and to classify subtypes
of AD [31]. However, decreased FDG uptake in the brain on PETFDG imaging is indicative
of neurodegeneration. Thus, PETFDG imaging is not an appropriate imaging test for the
early diagnosis of AD [32].

Early-phase 11C-Pittsburgh compound B (PiB) PET (PETPiB) imaging, which is ob-
tained within the first few minutes after PiB injection, reflects the cerebral blood pool due
to the lipophilic nature and high extraction fraction of PiB [33]. The close relationship
between blood supply and glucose consumption in the brain has been well-documented
in several studies. In regions of the brain with neuronal injury, glucose hypometabolism
and hypoperfusion are often concurrent [34,35]. Decreased tracer uptake on early-phase
PETPiB images is reported to closely correlate with hypometabolism in PETFDG images
and low mini-mental state examination scores in patients with early-stage AD. Thus, both
abnormal amyloid deposition and neurodegeneration extent in the brain may be assessed
with a conventional PETPiB image [8,9]. Another amyloid tracer, 18F-florbetapir, has also
been reported to have a strong correlation with PETFDG in early-phase 18F-florbetapir PET
imaging [36]. In recent studies regarding the early-phase PETFBB image, the early-phase
PETFBB image showed a close correlation with the PETFDG image [25,37,38]. In one study,
early-phase PETFBB images showed a slightly stronger correlation than PETPiB images,
suggesting that obtaining PETFBB images at dual time points with a single radioisotope
injection has the advantages of allowing for both accurate diagnosis and assessment of
progression in patients with AD [10]. This suggests that early-phase amyloid PET image
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could serve as a clinically viable alternative to the PETFDG image for assessing neuronal
injury in patients with dementia.

There has been increasing interest in using artificial intelligence (AI) to accurately
assess cognitive function in patients with AD. This is because AI has the potential to
overcome the diagnostic limitations of existing molecular biomarkers (such as amyloid
plaque and tau in cerebrospinal fluid) and imaging methods (such as computed tomography
(CT), MRI, amyloid PET imaging, and PETFDG imaging). AI can also help analyze and
interpret complex and large amounts of information from the brain. Most AI-based research
in AD focuses on developing AI algorithms for the classification or diagnosis of AD and
for developing biomarkers for the early detection of AD [39]. The current study focused on
image-to-image translation using deep learning to decrease the clinical burden associated
with obtaining multimodality imaging. We aimed to investigate whether AI can generate
PETGE-FDG image from conventional amyloid PET image. Image transformation using
deep learning in medical imaging has been widely studied [40,41]. Most of the studies have
focused on image translation between MRI and CT images, while some have studied image
translation between conventional radiologic imaging (CT or MRI) and PET images [41]. A
recent study reported on image-to-image translation using deep learning between amyloid
tracers [13]. In one of our previous studies, we reported on image-to-image translation
between the 18F-FP-CIT PET image and the PETFDG image using deep learning. The
study results revealed that the early-phase 18F-FP-CIT PET image that was generated was
significantly similar to the PETFDG image [12]. The generation of PETFBB from PETFDG
using deep learning has also been reported [42]. To the best of our knowledge, no study
has attempted to generate PETFDG images from PETFBB images. This is a preliminary study
that shows the potential of using two deep-learning models (cycleGAN and pix2pix) for
generating PETFDG images from conventional PETFBB images. PETGE-FDG images may
benefit patients by further reducing examination time (by acquiring only a single time point
conventional PETFBB image instead of dual-time point PETFBB image). The generation
of PETFDG images from PETFBB images might be challenging because of the negative
correlation between the regional uptakes in PETFDG and PETFBB images [43]. Additionally,
PETFBB images generally have a lower image quality than PETFDG images, especially when
there is a negative amyloid burden.

SSIM and PSNR were used to compare PETGE-FDG and PETRE-FDG. SSIM was devel-
oped to predict the perceived quality of digital images and measure the similarity between
two images [18]. Since then, SSIM has been widely used for image comparison by detecting
perceived structural changes during image processing. PSNR is a quantitative measure of
image denoising quality. SSIM aligns more closely with the human visual perception of
image quality when compared with PSNR [44]. SSIM and PSNR values of the cycleGAN
model was higher than those of the pix2pix model in this study. Although higher SSIM
and PSNR were not always equal to higher visual quality, PETGE-FDG using the cycleGAN
model was statistically closer to the PETRE-FDG image than the PETGE-FDG image using the
pix2pix model.

Two different GAN models, cycleGAN and pix2pix, were used to generate PETFDG
images from PETFBB in this study. Compared with the SSIM values of the PETGE-FDG images
using the cycleGAN model, the lower SSIM values of the PETGE-FDG images using the
pix2pix model may be related to the misalignment between the PETGE-FDG and PETRE-FDG
images. The pix2pix model is specialized for paired image-to-image translation. Therefore,
the contours of the PETFBB and PETFDG images must be aligned to correct the misalignment
before training the pix2pix model [11]. The correction process for the misalignment is
time-consuming and labor-intensive. In contrast, the cycleGAN model represents unpaired
image-to-image translation, and no preprocessing is required for image alignment. In this
respect, the cycleGAN model for the generation of PETFDG from PETFBB may be considered
more appropriate than the pix2pix model.

This study had some limitations. First, the numbers of training and validation datasets
were small. However, this limited dataset size is reflective of the reality of medical practice,
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where it is difficult to perform both tests (PETFBB and PETFDG images). In other words,
medical imaging data are often unpaired. In this regard, the application of deep learning
with cycleGAN model can have a significant clinical impact on the accurate assessment
of AD. Second, the size of each image was small. These limitations might affect the image
quality, although image size reduction is inevitable because of lower computational re-
sources [45]. Therefore, the image quality of PETGE-FDG is insufficient for visual assessments
in daily practice. Nevertheless, data augmentation techniques, including patching, flipping,
and resizing, have been used to overcome these limitations. Subsequently, PETGE-FDG
images with tolerable SSIM were generated. A larger number of datasets with relevant
image sizes should be made available to improve the visual quality of PETGE-FDG images
in further studies.

To the best of our knowledge, this study represents the first attempt to evaluate
whether images close to PETFDG images may be generated from conventional PETFBB
images using deep learning. Despite the aforementioned drawbacks and limitations, our
study results suggest that deep learning may reduce the time, cost, and patient inconve-
nience of additional early-phase scanning in PETFBB images and provide information on
the regional glucose metabolism of the brain at the same time. Future studies with larger
sample sizes are warranted to evaluate the correlation of PETGE-FDG and PETRE-FDG images,
which might provide valuable clinical evidence in this field.

5. Conclusions

We generated PETFDG from PETFBB images using the cycleGAN and pix2pix models.
The cycleGAN model generated PETFDG images with significantly higher SSIM and PSNR
than the pix2pix model. We demonstrated that PETGE-FDG image using cycleGAN may
have an image quality and similarity closer to PETRE-FDG image and help provide proper
management of AD by minimizing additional radiation risk and inconvenience caused to
the patient by extra image acquisition such as early-phase amyloid PET image.
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